GEN Exclusives

More »

Feature Articles

More »
Mar 1, 2012 (Vol. 32, No. 5)

Regenerative Medicine Back on Fast Track

After decades of frustratingly slow progress, regenerative medicine is buoyed by optimism.

  • Cardio Cure from Bone Marrow?

    Click Image To Enlarge +
    Researchers from the Cedars-Sinai Heart Institute recently reported on a clinical trial that demonstrated that treating heart attack patients with an infusion of their own heart-derived stem cells helps damaged hearts re-grow healthy muscle. [luismmolina/ iStockphoto.com]

    Bone-marrow-derived progenitor cells for cardiovascular disease are one focus of Cardio3 Biosciences, says CEO Christian Homsy, M.D. The company is also developing a pair of protein-based therapies designed to protect heart tissue from acute injury and promote activation of resident stem cells in the setting of an acute myocardial infarction.

    For the cardiovascular regeneration candidate, C-Cure, stem cells are harvested from the bone marrow of patients who have had ischemic events, and processed at Cardio3’s manufacturing facility in Belgium. The bone marrow is processed over 12 weeks with a combination of different growth factors to produce the end result—progenitor cells.

    The progenitor cells are injected into the patient’s heart. In a Phase II clinical trial in 45 patients in 2009 through 2010, there was a “very significant” difference between the control arm and the test arm of 18.1%, according to Dr. Homsy.

    He says that the cells have three modes of action: direct engraftment of the cells to become heart cells, genesis of new vessels, and stimulation of neighboring cells through secretions.

    The protein products, C3BS-GQR-1 and C3BS-GQR-2, are being developed as a drug to stimulate regeneration using the patient’s own stem cells. C2BS-GQR-1 is intended to be used in the context of a myocardial infarction. In preclinical studies in swine, treatment with the therapy produced a 65% decrease in scar size at six weeks post-infarction, compared to 25% for control swine.

    The other product, C3BS-GQR-2, has potential both for myocardial infarction and heart failure. “These proteins are generally given in two phases,” Dr. Homsy explains. “One during the initial procedure, and another set 15 days later.”

  • ACT’s Got Vision

    Gary Rabin presented ongoing work from Advanced Cell Technology relating to the company’s embryonic stem cell product for macular degeneration. According to Rabin, chairman and CEO, standard methods for harvesting embryonic stem cells involve removal of the inner cell mass of a blastocyst, which is destructive to the embryo.

    ACT developed a method that takes a single cell from the embryo at the morula stage. A morula has just four to eight cells total. This is the type of procedure used in preimplantation genetic diagnostics and is considered not to be destructive of the embryo.

    But ACT’s cells may have scientific advantages in addition to being embryo-friendly.

    “We tested our embryonic stem cell lines versus NIH approved lines,” Rabin says. “Our stem cell line was five times more efficient at creating the next germ layers.” The reason for this is that, when cells are extracted at the blastocyst stage, they are already committed to a cellular fat, such as blood cells, bone cells, etc. The earlier-stage morula cells don’t express those cell fate commitment factors, and are more malleable in their ability to create other kinds of cells in the body.

    ACT has developed a line of embryonic stem cell-derived retinal pigment epithelial (RPE) cells. The RPE cells reside at the back of the macula. When they decline, there’s a corresponding decline in photoreceptor cells that results in loss of vision.

    ACT is testing its RPE cells in three ongoing clinical trials in dry age-related macular degeneration, Stargardt macular dystrophy, and heart disease. It also has a preclinical program in disorders of the circulatory and vascular system, and expects to file an investigational new drug application to begin clinical trials in 2012.

    The company published Phase II clinical data in The Lancet describing the use of its RPE cells in two patients with dry AMD. In addition to showing a favorable safety profile, both patients experienced improvements in their vision that lasted for over four months, with no hyperproliferation, tumorigenicity, ectopic tissue formation, or rejection. (Those are all adverse events associated with embryonic stem cells therapy.) The cells appeared to engraft properly and resume normal RPE morphology.


Add a comment

  • You must be signed in to perform this action.
    Click here to Login or Register for free.
    You will be taken back to your selected item after Login/Registration.

Related content

Jobs

GEN Jobs powered by HireLifeScience.com connects you directly to employers in pharma, biotech, and the life sciences. View 40 to 50 fresh job postings daily or search for employment opportunities including those in R&D, clinical research, QA/QC, biomanufacturing, and regulatory affairs.
 Searching...
More »

GEN Poll

More » Poll Results »

Climate Change and Disease

Are the incursions of dengue fever and West Nile virus into North America just the tip of the iceberg of insect-borne diseases that are migrating due to a warming planet?