GEN Exclusives

More »

Tutorials

More »
Jun 1, 2010 (Vol. 30, No. 11)

Integration of Single-Use Transfer Lines

Flexible Assemblies Can Reduce Downtime Associated with Cleaning and Validation

  • Manufacturers across every industry need to continuously boost manufacturing speed and efficiency, and therefore, rely on new technologies that can be easily integrated into their existing production processes. One solution bioprocessing manufacturers are increasingly implementing is single-use systems—particularly single-use transfer lines and tubing assemblies, which can deliver significant value through added flexibility, improved asset/equipment utilization, and increased cost savings.

    Unlike hard piping, the flexible tubing incorporated into single-use transfer lines does not require costly and time-consuming cleaning and validation. This allows manufacturers to manage business cycles by quickly changing process steps or converting over to a new product. This is a key advantage for multiple product facilities in which process requirements change depending on the drug being produced. Innovative manufacturers now incorporate single-use tubing assemblies throughout the bioprocess from seed trains to final fill applications.

    The key benefit of single-use transfer lines is the ability to boost productivity and accelerate time to market by reducing downtime associated with cleaning and validation of the processing equipment. Between each production batch, fixed tubing and re-usable valves need to be cleaned to maintain desired sterility. Single-use systems are provided presterilized, helping to eliminate the need for traditional cleaning and sterilization.

    Additional cost savings result from reduced labor, chemical, water, and energy demands associated with cleaning and validation. Not only do single-use systems reduce cost, they also improve the safety of drug development and delivery. Presterilized, single-use tubing assemblies reduce the risk of cross contamination that may lead to product loss or reduced yields. This benefit is further magnified for companies that produce multiple products within single facilities.

  • Seed Trains

    Click Image To Enlarge +
    Figure 1. This production suite relies on stainless steel bioreactors but integrates single-use technology for cell culture media storage and key transfer lines.

    Modern bioprocessing facilities scale up inoculum from a few million cells in several milliliters of culture to production volumes of up to 25,000 L or more. This process requires aseptic transfer at each point along the seed train. Traditional bioprocessing facilities accomplish scale-up using a dedicated series of stainless steel bioreactors linked together with valves and rigid tubing.

    To prevent contamination between production runs, a clean-in-place (CIP) system is designed into each bioreactor, vessel, and piping line to remove any residual materials. These CIP and steam-in-place (SIP) systems require extensive validation testing, and the valves and piping contained in these systems can create additional validation challenges. 

    Advances in single-use technology allow bioprocess engineers to replace most storage vessels and fixed piping networks with single-use storage systems and tubing assemblies (Figure 1). Single-use eliminates the need for CIP validation for many components and reduces maintenance and capital expense by eliminating expensive vessels, valves, and sanitary piping assemblies.

    Single-use media storage systems are routinely manufactured for volumes from 20 to 2,500 L. Media storage systems arrive at the bioprocess facility sterilized by gamma irradiation and often are fitted with integrated filters, sampling systems, and connectors. Using an SIP connector like Colder Products’ Steam-Thru® Connection allows operators to make sterile connections between these presterilized single-use systems and stainless steel bioreactors for aseptic transfer of media.

    Similarly, single-use tubing assemblies may be used to transfer inoculum between bioreactors using either a peristaltic pump or head-space pressure. Such transfer lines can reduce the number of reusable valves required for transfer and eliminate problem areas for CIP and SIP validation. Terminating each presterilized transfer line with a single-use SIP connector provides sterility assurance equal to that of traditional fixed piping, at lower capital costs.

  • Click Image To Enlarge +
    Figure 2. This model facility incorporates single-use media storage and bioreactors along with stainless steel bioreactors.

    With the acceptance of single-use bioreactors, some bioprocess engineers are using these systems for both seed trains and small-scale production. These systems are connected to a cell culture media storage bag (either by aseptic welding or aseptic connectors such as AseptiQuik®) using flexible tubing. Flexible tubing with aseptic connectors are used as transfer lines between each reactor in the process.

    For production volumes over 1,000 L, a single-use bioreactor typically seeds one or more stainless bioreactors. SIP connectors can link the single-use and stainless sections of a seed train (Figure 2).



Related content

Jobs

GEN Jobs powered by HireLifeScience.com connects you directly to employers in pharma, biotech, and the life sciences. View 40 to 50 fresh job postings daily or search for employment opportunities including those in R&D, clinical research, QA/QC, biomanufacturing, and regulatory affairs.
 Searching...
More »

GEN Poll

More » Poll Results »

Children and Antipsychotic Drugs

Do you think children and adolescents with behavioral problems are overmedicated?