GEN Exclusives

More »

Feature Articles

More »
Nov 15, 2009 (Vol. 29, No. 20)

Head Start Boosts Value of Stability Testing

Early Data Can Guide Formulation Strategies and Contribute to Regulatory Filings

  • Maximizing and validating the stability of a drug is critical throughout its life cycle, beginning in the development phase of an active pharmaceutical ingredient (API), continuing through the final formulation process, and following commercialization as part of post-marketing product analysis.

    The assessment of a compound’s chemical and physical characteristics, potency, activity, solubility, and appearance after storage under a variety of defined conditions can guide decision making on which experimental candidate to take forward, or may signal the need to reengineer a lead compound to enhance its stability before initiating costly preclinical and clinical studies.

    The stability of a drug, whether a small molecule or a larger biopharmaceutical such as a protein, is an essential part of analytical testing to ensure the identity and activity of the API, assess the final formulation, and detect degradation products or aggregates that might contribute to increased risk of adverse effects and toxicity.

    Two years ago, the ICH Steering Committee endorsed the establishment of a Quality Implementation Working Group to monitor the consistent, global implementation of the Q8 (Pharmaceutical Development), Q9 (Quality Risk Management), and Q10 (Pharmaceutical Quality System) guidelines that were established in 2003. These recommendations represented a departure from traditional approaches to quality guidance and emphasized a quality system built on risk- and science-based strategies.

    Stefan Adam, Ph.D., director of analytical development and quality control at LifeCycle Pharma, emphasized the importance of applying ICH Q8, Q9, and Q10 guidelines to the early phases of small molecule drug development in his presentation at Bharat Book’s “Stability Testing” conference held earlier this month in London. The outcomes of early-stage testing, including analysis of a compound’s chemical or physical incompatibility, could then be applied to the selection of excipients for formulating the API into a drug product. This type of risk management-based approach can benefit from close interaction between the analytical, formulations, and manufacturing teams.

    Risk management is an important component of a proactive stability program, in Dr. Adam’s view. The ability to predict probability of success by performing sound risk assessment at every step of developmentis a valuable tool that can save companies time, resources, and money. For example, from the beginning a company should perform diligent forced-degradation and excipient-compatibility studies and use the results together with data obtained from bulk stability testing and evaluation of the packaging material to predict early on a long-term stable formulation.

  • Never Too Early

    Click Image To Enlarge +
    An analyst at Xcelience prepares to analyze a sample utilizing Waters' UPLC technology.

    Waiting to begin stability studies until you have a drug in its final formulation may be a costly approach, warned James Clark, stability team leader in the pharmaceutical development services group at Xcelience, a CRO based in Tampa, FL, that provides formulation development, preformulation, analytical, and clinical trial manufacturing services to companies developing small molecule drugs.

    Early stability data can help distinguish between parallel compounds in development, guide formulation strategies, contribute to regulatory filings for early-stage clinical studies, and allow researchers “to go into Phase II or III trials with a lot more confidence,” said Clark.

    By applying the principles in the ICH Q8, Q9, and Q10 guidelines, companies will define what the FDA describes as critical quality attributes, based on the outcomes of early-stage analytical studies. These can then be used as measures for assessing a drug product as it moves through pilot and large-scale production. A clear understanding of what effect changes in a drug product’s chemical and/or physical properties over time might have on its bioavailability can help define acceptable and optimal parameters and establish a foundation for interpreting later test results.

  • Click Image To Enlarge +
    Diapharm reports an increase in exploratory testing earlier in development.

    Sven Oliver Kruse, Ph.D., managing director at Diapharm, has observed an increase in exploratory testing earlier in development, including the use of accelerated conditions and stress testing to assess product degradation. With this information researchers can begin to determine how to develop a stable formulation of an API and whether the final drug product will be formulated as a liquid—for oral or intravenous administration—or a solid.

    At the stability testing meeting, Dr. Kruse discussed the European GMP guidelines and, in particular, the requirement for ongoing stability testing as part of the preparation of an annual product quality report (PQR) for pharmaceutical products already on the market. The PQR calls for continuous stability testing of, typically, one batch of product each year, performed in controlled storage cabinets for a period of not less than the stated shelf life. This requirement applies to every different dosage, pack size, and package type for a given product.

    The European Union’s GMP guidelines allow ongoing stability-testing protocols to differ from those required for the initial long-term stability determination conducted before a product receives approval for commercial sale. For example, ongoing testing of a particular parameter can be done less frequently if that parameter has been shown not to be critical to product stability, explained Dr. Kruse.

    In some cases, frequency of testing can be reduced by 50% or more, for substantial cost savings, he reported. To prove product stability throughout the labeled shelf-life he recommended retesting of all parameters when a product reaches its expiration date. Companies may also need to apply the full testing protocol to the first batch of product made available for commercial sale in order to generate sufficient data for subsequent trend analyses.

    Stability testing is essential for determining a product’s shelf life. ICH guidelines have standardized international protocols for stability testing at storage conditions of 30ºC and 65% humidity. Accelerated testing conditions of 40ºC and 75% humidity are commonly used to predict the effects of long-term storage at room temperature.

    A movement in the industry toward building quality into a drug compound from the earliest stages of development, sometimes called quality by design, would, in theory, eliminate or greatly reduce the need for end-product testing, including for stability. The theory holds that if you develop and test a product correctly throughout its life cycle and ensure a high level of quality control along the developmental pipeline, then assessment of the final product before release would be redundant. However, it will likely take quite a bit of confirmatory data to convince companies to forgo long-standing release testing.


Add a comment

  • You must be signed in to perform this action.
    Click here to Login or Register for free.
    You will be taken back to your selected item after Login/Registration.

Related content

Jobs

GEN Jobs powered by HireLifeScience.com connects you directly to employers in pharma, biotech, and the life sciences. View 40 to 50 fresh job postings daily or search for employment opportunities including those in R&D, clinical research, QA/QC, biomanufacturing, and regulatory affairs.
 Searching...
More »

GEN Poll

More » Poll Results »

Should the CDC Director Resign?

Do you think the CDC chief should resign?