GEN Exclusives

More »

Feature Articles

More »
Sep 15, 2013 (Vol. 33, No. 16)

Fine-Tuning Formulation Processes

  • Click Image To Enlarge +
    According to CMC Biologics, it employs high-throughput and DOE approaches to obtain the most data, in a timely fashion, from the smallest quantity of material.

    Formulation of biopharmaceuticals poses numerous challenges related to the chemical and physical properties of drugs, and the fact that nearly all such products are injected.

    Formulation development is a “big piece of the drug development puzzle,” says M. Byron Kneller, Ph.D., associate director for analytical and formulation development at contract manufacturer and development firm CMC Biologics. The company specializes in early- and production-stage formulation development, not only for its manufacturing clients but also through standalone contract work.

    Most of CMC’s customers are early-stage developers of biotherapeutics preparing for their first clinical cGMP batches. With such “young” projects, the key hurdles are logistical.

    “Our main challenges are acquiring enough material to conduct all the formulation and stability studies,” notes Dr. Kneller. Material demand is particularly high for studies on highly concentrated protein drugs.

    In many instances, when customers ask CMC to redesign the process from the cell line up, there is no material at all to work with. Formulation development may even stall until CMC’s manufacturing team can prepare sufficient material and work out upstream and downstream steps.

    A related issue involves the stage at which defining formulation studies occur. “We try to do as much as we can early in development, but we attempt to save our pivotal studies for the end, when we have lots of material and the process is more or less locked. The final material we use should be representative of the drug substance produced during Phase III and beyond,” explains Dr. Kneller.

    Even when material is scarce, or not representative of the final process output, it is possible to perform stress-degrading studies and to obtain some idea of factors that promote stability, and those that don’t. “For some molecules it might be oxidation, for others pH or heat,” continues Dr. Kneller. Such “preformulation” studies also help identify suitable analytical methods, and even guide downstream processing.

    CMC has employed high-throughput and design-of-experiment approaches to obtain the most data, in timely fashion, from the smallest quantity of material. This strategy applies to liquid formulation as well as lyophilization.

    Recent articles in GEN have highlighted the power of design-of-experiment and high-throughput approaches to formulation development. CMC is capable of conducting formulation development in that manner.

    But because of development time constraints, the final formulation may not have been thoroughly and systematically optimized for that particular protein. “Sometimes customers only have time for a formulation that is good enough, that is suitable for clinical testing” admits Dr. Kneller. “They want a formulation that will serve them in Phases I and II, but in many cases it’s perfectly fine beyond that as well.”

  • Biosimilars: Not Quite an Open Book

    Formulation of biosimilars is somewhat facilitated by the requirement that manufacturers disclose formulas for all injectable drugs. According to Sarfaraz K. Niazi, Ph.D., chairman and CEO of Therapeutic Proteins International, “We know exactly what’s in every product. What we don’t know are the in-process limits and controls, grades of materials used, and mixing and formulating processes. For protein drugs those factors are much more important than for small molecules.”

    Since seemingly innocuous formulation changes can pose grave consequences, it is imperative for biosimilar producers to get things right. Dr. Niazi relates the example of erythropoietin (EPO) from the late 1990s to early 2000s. The switch from a human serum albumin stabilizer to polysorbate 80 and glycine was believed to cause the “epidemic” of pure red cell aplasia among patients taking EPO. According to some reports, the new formulation caused extraction of chemical agents from uncoated rubber stoppers on vials.

    The incident is perhaps over-cited, says Dr. Niazi, and was the only known example where such drastic formulation-related effects were observed, “but it nevertheless points to the significance of formulation.”

    The EPO case also alerted formulators to the interplay between drug, formulation, and the nearly ubiquitous delivery or storage device that accompanies parenteral biologics. “The device is often the most neglected factor, even though it is an integral part of the formulation,” says Dr. Niazi.

    Many biotech drugs come in prefilled syringes and auto-injectors. Even the vials in which lyophilized drug is reconstituted may be considered a device. Materials and ancillary components of delivery and storage devices can impart properties to formulations that render them potentially immunogenic, or interfere with quality assays.

    For example, the barrels of prefilled syringes are often lubricated with silicone oil. Unless formulators take special care, the lubricant could spill into the drug product, where particle-sizing instruments may mistake it for protein aggregates.

  • Automation to the Rescue

    Click Image To Enlarge +
    KBI Biopharma is using Freeslate’s Biologics Formulation System to support biologics formulation screening and accelerated stress studies. The system capabilities include formulation/sample preparation and measurement of formulation pH, viscosity, particle counting, turbidity, color, and protein concentration and aggregation.

    Contract manufacturing/development firm KBI Biopharma has recently put into place a high-throughput robotic liquid handling system from Freeslate. The Freeslate Core Module 3 resembles common liquid handling workstations, but incorporates functions and software suitable for formulation development in 96-well plate format.

    Prathima Acharya, Ph.D, chief scientist at KBI, notes that the Core instrument has built-in capability for analyzing viscosity, osmolology, and concentration, as well as standard solution parameters. Because it relies on robotic plate handling and dispensing, the system facilitates highly parallel, design-of-experiment formulation development.

    “We adopted the Freeslate technology because of the frequency with which initial formulation development faces material shortages,” says Dr. Acharya. “The Freeslate product enables us to do a lot more with very little material and provides answers quickly. We can set up an experiment before we leave for the day and have results by the next morning.”

    Despite high-throughput capabilities, KBI does not frequently perform highly systematic formulation screening or attempt to cover every parameter, buffer ingredient, or stabilizer. Based on a molecule’s structure and type, formulators can achieve an a priori elimination of many variables, or at least narrow their expected ranges. “Then, when you add high-throughput methods, timelines accelerate even more. It’s all about timelines,” explains Dr. Acharya.

    Bridging the gap between early-process and late-process material has always been challenging for formulators. With the “product is the process” being the prevailing view, one may ask where in the development timeline one would find the optimal point to initiate formulation development, or where one should become concerned over impurities, misfolded protein, or aggregates.

    Early versus late impurity profiles can alter the endpoints of formulation screening. But Dr. Achayra believes that early-late difference matter less if one relies on experience and high-throughput methods. Dr. Achayra’s group runs early material in select high-throughput screens, then runs confirmatory experiments after the process is set. “That’s how to bridge the gap between development and manufacturing material,” says Dr. Achayra.



Related content

Jobs

GEN Jobs powered by HireLifeScience.com connects you directly to employers in pharma, biotech, and the life sciences. View 40 to 50 fresh job postings daily or search for employment opportunities including those in R&D, clinical research, QA/QC, biomanufacturing, and regulatory affairs.
 Searching...
More »

GEN Poll

More » Poll Results »

Should the CDC Director Resign?

Do you think the CDC chief should resign?