GEN Exclusives

More »

Feature Articles

More »
Feb 1, 2013 (Vol. 33, No. 3)

Challenging the Limits of Protein Characterization

  • The ability to better characterize the peptides and proteins that flow through the pharmaceutical industry’s pipelines engenders a call for better characterization at the same time regulatory demands spur innovations.

    Older technologies are being updated and upgraded and new ones are being developed, challenging the limits as to how small and what types of particles and degradation products, and in what kind of formulation, can be detected and differentiated one from another.

    Scientists gathered at CHI’s “PepTalk” conference last month to share their insights on the tools to use for protein characterization, and reasons for choosing a particular formulation over another.

    Aggregates and subvisible particles are detrimental to any protein or peptide drug formulation, and pharmaceutical companies are on the lookout for them using a variety of screening tools at various points in the process from discovery to market.

    Among those especially suited to the late discovery/early formulation stage is dynamic light scattering (DLS). DLS has been around since the 1950s but was long considered a “black box technology, where the analysis was complex, and it was difficult to make the measurement,” said Kevin Mattison, Ph.D., principle scientist, bioanalytics, at Malvern Instruments.

    The technology itself has become much more user friendly, and vendors have mastered data interpretation so that it’s pretty straight-forward. No sample preparation or chromatography is necessary, and it will work under very dilute or turbid conditions (the latest generation systems can handle highly concentrated samples as well). “You put your sample in, hit the go button, and about a minute later you get the size distribution across a range of about 1 nm—1 µm,” he said. “It will tell you whether or not you’ve got aggregates in there.”

    While it’s easy to make the measurements, there can still be complexities of data interpretation. A lot of users get in trouble because they tend to overinterpret the data because they don’t fully understand it. That and prompting from industry is what led Dr. Mattison to co-develop and teach a short course on how to obtain reliable information from DLS by knowing what properties of the sample will influence the signal.

    DLS measures the change in light scattered over a short increment of time due to Brownian motion of particles suspended in a liquid. While this is partly dependent on concentration, where DLS derives its real power is that the amount of light scattered is extraordinarily sensitive to the size of the particles doing the scattering, increasing by r6—that is, by the radius to the 6th power. A 100 nm aggregate “will dominate your DLS signal and it will stand out like a sore thumb,” Dr. Mattison noted. On the other hand, other optical techniques may not be able to pick it up (especially at low concentration), and the particles may be too big for size-exclusion chromatography.

    DLS measurements can help predict shelf life and viscosity at higher concentrations, he added.

    One of the common challenges Dr. Mattison faces is that people want to use DLS to count particles. He cautioned: “It can tell you how big it is, and can tell you whether or not it’s in there. But it cannot tell you to any degree of acceptable accuracy how much of it is in there.”

  • What Is It?

    Click Image To Enlarge +
    According to ProteinSimple, MFI quickly analyzes particle size, shape, and transparency from 1 µm to larger micron sizes.

    Other technologies such as light obscuration can count particles, but neither it nor DLS can identify what the particle is.

    With newer techniques like resonance mass measurement and flow imaging microscopy, “you can see if it’s a protein particle, or if it’s a silicone oil droplet,” said Andrea Hawe, Ph.D., CSO for research at Coriolis Pharma, and a co-founder of the company.

    The Archimedes resonance mass instrument from Affinity Biosensors will query the mass and density of a particle from about 500 nm to about 1–2 µm, while the MFI microflow imaging system from ProteinSimple can analyze properties such as particle size, shape, and transparency from 2 µm to larger micron sizes, Dr. Hawe pointed out. Software algorithms can then determine the makeup of the particles—whether protein or silicone oil, for example. Combining the two techniques allows you to characterize a wide size range of subvisible particles.

    This is highly relevant for therapeutic proteins in prefilled syringes because they are siliconized on the stopper and glass barrel, and “as soon as the formulation gets into the cartridge the silicone oil droplets start to form,” she said.

    In protein and peptide formulations—especially when highly concentrated—the refractive index of particles is often so similar to that of the formulation itself that there is insufficient contrast to be adequately picked up by light obscuration (which is often required by regulators for batch release).

    “What you can do is switch to (or additionally do) microflow imaging where you have better contrast, or you can switch to a different measurement principle like resonance mass measurement,” Dr. Hawe noted. “You can also think about diluting your sample in a different formulation, but this is not recommended because when you change the formulation, this might also change your particles.”

    Silicone oil droplets are only one example of extractables and leachables that may be picked up from process equipment, disposable systems, packaging, and delivery materials, including syringes, cartridges, tubing, filters, and gaskets. We have to better understand the interaction with the drug product, “and be careful because these have a strong impact on the product quality and on the safety profile,” said Jöel Richard, Ph.D., vp, peptides, at Ipsen.

    Metallic compounds and organic compounds—such as unreacted oligomers and curing agent residues—can interact with protein molecules in the formulation and chemically degrade them, cause them to aggregate, or form composite impurities with them.

    Stainless steel, cellulose, glass, and silica have all been implicated in aggregation of protein therapeutics and formation of particulates. Tungsten microparticles, formed during the boring of needle holes, have been seen to produce visible particles with proteins, and soluble tungsten polyanions in slightly acidic buffer can precipitate monoclonal antibodies within seconds.

    Dr. Richard recommends first performing a careful evaluation of the manufacturing steps that can generate aggregates and particulates, including an assessment of the packaging system, and gathering and analyzing whatever data can be obtained from suppliers. Then use a quantitative risk-based approach. Derive the daily dose of leachables that would be administered and compare them to toxicity guidelines. Steps with higher risk should be monitored using independent analytical methods.

    “The key is to determine what is necessary, because you can generate a lot of data,” he said. “Depending on the type of formulation you have, if you have companion packaging materials, are extraction studies necessary or not?”

    Any change of formulation, container closure components, and process steps need to be analyzed and monitored as well. To drive the point home, Dr. Richard cited a famous example in which a company commercializing epoetin alfa in Europe simultaneously changed both the primary container and the formulation composition, and the new formulation extracted some low molecular weight organic compounds—residues of the vulcanizing process used to create the rubber syringe stoppers.

    These acted like adjuvants, practically turning the formulation into “a vaccine” that elicited an immune response against administered and endogenous erythropoietin, leading to a depletion of the patient’s red blood cells (i.e., pure red-cell aplasia).

    Guidance on exactly what constitutes a safe formulation can be somewhat lacking, Dr. Richard pointed out. “There are a lot of guidelines, a lot of regulations. They tell you basically what to do, but they don’t tell you how to do it, nor when to do it, nor propose clear acceptance criteria.”


Add a comment

  • You must be signed in to perform this action.
    Click here to Login or Register for free.
    You will be taken back to your selected item after Login/Registration.

Related content

Jobs

GEN Jobs powered by HireLifeScience.com connects you directly to employers in pharma, biotech, and the life sciences. View 40 to 50 fresh job postings daily or search for employment opportunities including those in R&D, clinical research, QA/QC, biomanufacturing, and regulatory affairs.
 Searching...
More »

GEN Poll

More » Poll Results »

Children and Antipsychotic Drugs

Do you think children and adolescents with behavioral problems are overmedicated?